Loading report..

Highlight Samples

This report has flat image plots that won't be highlighted.
See the documentation for help.

Regex mode off

    Rename Samples

    This report has flat image plots that won't be renamed.
    See the documentation for help.

    Click here for bulk input.

    Paste two columns of a tab-delimited table here (eg. from Excel).

    First column should be the old name, second column the new name.

    Regex mode off

      Show / Hide Samples

      This report has flat image plots that won't be hidden.
      See the documentation for help.

      Regex mode off

        Export Plots

        px
        px
        X

        Download the raw data used to create the plots in this report below:

        Note that additional data was saved in multiqc_data when this report was generated.


        Choose Plots

        If you use plots from MultiQC in a publication or presentation, please cite:

        MultiQC: Summarize analysis results for multiple tools and samples in a single report
        Philip Ewels, Måns Magnusson, Sverker Lundin and Max Käller
        Bioinformatics (2016)
        doi: 10.1093/bioinformatics/btw354
        PMID: 27312411

        Save Settings

        You can save the toolbox settings for this report to the browser.


        Load Settings

        Choose a saved report profile from the dropdown box below:

        About MultiQC

        This report was generated using MultiQC, version 1.9

        You can see a YouTube video describing how to use MultiQC reports here: https://youtu.be/qPbIlO_KWN0

        For more information about MultiQC, including other videos and extensive documentation, please visit http://multiqc.info

        You can report bugs, suggest improvements and find the source code for MultiQC on GitHub: https://github.com/ewels/MultiQC

        MultiQC is published in Bioinformatics:

        MultiQC: Summarize analysis results for multiple tools and samples in a single report
        Philip Ewels, Måns Magnusson, Sverker Lundin and Max Käller
        Bioinformatics (2016)
        doi: 10.1093/bioinformatics/btw354
        PMID: 27312411

        A modular tool to aggregate results from bioinformatics analyses across many samples into a single report.

        Report generated on 2022-02-11, 19:56 based on data in: /scratch/gencore/logs/html/000000000-JNB4T/1


        General Statistics

        Showing 194/194 rows and 3/5 columns.
        Sample Name% Dups% GCM Seqs
        000000000-JNB4T_l01_n01_HW6_01_v2
        85.6%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_02_v2
        83.7%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_03_v2
        89.8%
        56%
        0.3
        000000000-JNB4T_l01_n01_HW6_04_v2
        85.4%
        56%
        0.1
        000000000-JNB4T_l01_n01_HW6_05_v2
        77.7%
        57%
        0.2
        000000000-JNB4T_l01_n01_HW6_06_v2
        79.9%
        57%
        0.2
        000000000-JNB4T_l01_n01_HW6_07_v2
        83.1%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_08_v2
        77.2%
        57%
        0.2
        000000000-JNB4T_l01_n01_HW6_09_v2
        80.3%
        57%
        0.2
        000000000-JNB4T_l01_n01_HW6_10_v2
        78.4%
        57%
        0.2
        000000000-JNB4T_l01_n01_HW6_11_v2
        78.9%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_12_v2
        85.2%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_13_v2
        77.8%
        57%
        0.2
        000000000-JNB4T_l01_n01_HW6_14_v2
        88.4%
        55%
        0.1
        000000000-JNB4T_l01_n01_HW6_15_v2
        84.5%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_16_v2
        82.0%
        56%
        0.1
        000000000-JNB4T_l01_n01_HW6_17_v2
        79.7%
        56%
        0.1
        000000000-JNB4T_l01_n01_HW6_18_v2
        80.5%
        57%
        0.1
        000000000-JNB4T_l01_n01_HW6_19_v2
        80.2%
        56%
        0.1
        000000000-JNB4T_l01_n01_HW6_20_v2
        74.2%
        58%
        0.2
        000000000-JNB4T_l01_n01_HW6_21_v2
        82.5%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_22_v2
        69.7%
        58%
        0.2
        000000000-JNB4T_l01_n01_HW6_23_v2
        82.1%
        56%
        0.1
        000000000-JNB4T_l01_n01_HW6_24_v2
        79.2%
        57%
        0.2
        000000000-JNB4T_l01_n01_HW6_25_v2
        86.7%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_26_v2
        87.7%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_27_v2
        88.8%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_28_v2
        86.4%
        55%
        0.1
        000000000-JNB4T_l01_n01_HW6_29_v2
        78.2%
        57%
        0.1
        000000000-JNB4T_l01_n01_HW6_30_v2
        83.3%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_31_v2
        89.0%
        55%
        0.2
        000000000-JNB4T_l01_n01_HW6_32_v2
        80.3%
        57%
        0.2
        000000000-JNB4T_l01_n01_HW6_33_v2
        78.6%
        57%
        0.2
        000000000-JNB4T_l01_n01_HW6_34_v2
        81.6%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_35_v2
        83.7%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_36_v2
        84.3%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_37_v2
        81.6%
        57%
        0.2
        000000000-JNB4T_l01_n01_HW6_38_v2
        78.8%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_39_v2
        72.5%
        57%
        0.1
        000000000-JNB4T_l01_n01_HW6_40_v2
        77.0%
        57%
        0.1
        000000000-JNB4T_l01_n01_HW6_41_v2
        86.7%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_42_v2
        79.1%
        56%
        0.1
        000000000-JNB4T_l01_n01_HW6_43_v2
        91.2%
        55%
        0.2
        000000000-JNB4T_l01_n01_HW6_44_v2
        84.7%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_45_v2
        88.2%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_46_v2
        74.6%
        57%
        0.2
        000000000-JNB4T_l01_n01_HW6_47_v2
        81.8%
        57%
        0.2
        000000000-JNB4T_l01_n01_HW6_48_v2
        85.3%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_49_v2
        80.9%
        57%
        0.2
        000000000-JNB4T_l01_n01_HW6_50_v2
        79.9%
        56%
        0.1
        000000000-JNB4T_l01_n01_HW6_51_v2
        88.6%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_52_v2
        88.6%
        55%
        0.1
        000000000-JNB4T_l01_n01_HW6_53_v2
        77.9%
        56%
        0.1
        000000000-JNB4T_l01_n01_HW6_54_v2
        80.4%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_55_v2
        74.2%
        57%
        0.1
        000000000-JNB4T_l01_n01_HW6_56_v2
        77.7%
        57%
        0.2
        000000000-JNB4T_l01_n01_HW6_57_v2
        77.8%
        57%
        0.2
        000000000-JNB4T_l01_n01_HW6_58_v2
        80.0%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_59_v2
        85.2%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_60_v2
        78.4%
        57%
        0.2
        000000000-JNB4T_l01_n01_HW6_61_v2
        83.8%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_62_v2
        84.5%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_63_v2
        87.2%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_64_v2
        87.0%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_65_v2
        86.5%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_66_v2
        81.7%
        57%
        0.2
        000000000-JNB4T_l01_n01_HW6_67_v2
        80.4%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_68_v2
        86.5%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_69_v2
        80.1%
        57%
        0.2
        000000000-JNB4T_l01_n01_HW6_70_v2
        86.0%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_71_v2
        83.3%
        56%
        0.1
        000000000-JNB4T_l01_n01_HW6_72_v2
        82.7%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_73_v2
        78.8%
        57%
        0.2
        000000000-JNB4T_l01_n01_HW6_74_v2
        84.9%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_75_v2
        85.1%
        56%
        0.3
        000000000-JNB4T_l01_n01_HW6_76_v2
        83.2%
        56%
        0.1
        000000000-JNB4T_l01_n01_HW6_77_v2
        79.7%
        57%
        0.2
        000000000-JNB4T_l01_n01_HW6_78_v2
        81.9%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_79_v2
        86.3%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_80_v2
        77.4%
        57%
        0.2
        000000000-JNB4T_l01_n01_HW6_81_v2
        85.2%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_82_v2
        81.6%
        57%
        0.2
        000000000-JNB4T_l01_n01_HW6_83_v2
        81.0%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_84_v2
        78.1%
        57%
        0.2
        000000000-JNB4T_l01_n01_HW6_85_v2
        81.6%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_86_v2
        82.1%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_87_v2
        81.6%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_88_v2
        84.6%
        56%
        0.1
        000000000-JNB4T_l01_n01_HW6_89_v2
        71.0%
        58%
        0.2
        000000000-JNB4T_l01_n01_HW6_90_v2
        75.1%
        57%
        0.2
        000000000-JNB4T_l01_n01_HW6_91_v2
        81.7%
        56%
        0.1
        000000000-JNB4T_l01_n01_HW6_92_v2
        79.8%
        57%
        0.2
        000000000-JNB4T_l01_n01_HW6_93_v2
        70.3%
        58%
        0.2
        000000000-JNB4T_l01_n01_HW6_94_v2
        83.7%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_95_v2
        80.9%
        56%
        0.2
        000000000-JNB4T_l01_n01_HW6_96_v2
        82.2%
        56%
        0.1
        000000000-JNB4T_l01_n01_undetermined
        83.6%
        50%
        1.3
        000000000-JNB4T_l01_n02_HW6_01_v2
        87.8%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_02_v2
        85.9%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_03_v2
        90.9%
        57%
        0.3
        000000000-JNB4T_l01_n02_HW6_04_v2
        86.7%
        57%
        0.1
        000000000-JNB4T_l01_n02_HW6_05_v2
        81.1%
        58%
        0.2
        000000000-JNB4T_l01_n02_HW6_06_v2
        81.7%
        58%
        0.2
        000000000-JNB4T_l01_n02_HW6_07_v2
        86.0%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_08_v2
        80.2%
        58%
        0.2
        000000000-JNB4T_l01_n02_HW6_09_v2
        83.3%
        58%
        0.2
        000000000-JNB4T_l01_n02_HW6_10_v2
        81.7%
        58%
        0.2
        000000000-JNB4T_l01_n02_HW6_11_v2
        82.7%
        58%
        0.2
        000000000-JNB4T_l01_n02_HW6_12_v2
        86.8%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_13_v2
        82.3%
        58%
        0.2
        000000000-JNB4T_l01_n02_HW6_14_v2
        90.2%
        56%
        0.1
        000000000-JNB4T_l01_n02_HW6_15_v2
        86.4%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_16_v2
        84.3%
        57%
        0.1
        000000000-JNB4T_l01_n02_HW6_17_v2
        83.8%
        57%
        0.1
        000000000-JNB4T_l01_n02_HW6_18_v2
        82.9%
        58%
        0.1
        000000000-JNB4T_l01_n02_HW6_19_v2
        83.9%
        57%
        0.1
        000000000-JNB4T_l01_n02_HW6_20_v2
        77.6%
        59%
        0.2
        000000000-JNB4T_l01_n02_HW6_21_v2
        85.1%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_22_v2
        75.4%
        58%
        0.2
        000000000-JNB4T_l01_n02_HW6_23_v2
        84.9%
        57%
        0.1
        000000000-JNB4T_l01_n02_HW6_24_v2
        81.6%
        58%
        0.2
        000000000-JNB4T_l01_n02_HW6_25_v2
        87.4%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_26_v2
        88.7%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_27_v2
        90.5%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_28_v2
        88.2%
        56%
        0.1
        000000000-JNB4T_l01_n02_HW6_29_v2
        82.3%
        58%
        0.1
        000000000-JNB4T_l01_n02_HW6_30_v2
        85.5%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_31_v2
        90.2%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_32_v2
        82.3%
        58%
        0.2
        000000000-JNB4T_l01_n02_HW6_33_v2
        80.9%
        58%
        0.2
        000000000-JNB4T_l01_n02_HW6_34_v2
        84.6%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_35_v2
        85.8%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_36_v2
        86.1%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_37_v2
        83.3%
        58%
        0.2
        000000000-JNB4T_l01_n02_HW6_38_v2
        81.4%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_39_v2
        78.6%
        58%
        0.1
        000000000-JNB4T_l01_n02_HW6_40_v2
        80.0%
        57%
        0.1
        000000000-JNB4T_l01_n02_HW6_41_v2
        87.7%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_42_v2
        82.2%
        57%
        0.1
        000000000-JNB4T_l01_n02_HW6_43_v2
        92.0%
        56%
        0.2
        000000000-JNB4T_l01_n02_HW6_44_v2
        86.0%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_45_v2
        89.6%
        56%
        0.2
        000000000-JNB4T_l01_n02_HW6_46_v2
        79.3%
        58%
        0.2
        000000000-JNB4T_l01_n02_HW6_47_v2
        84.0%
        58%
        0.2
        000000000-JNB4T_l01_n02_HW6_48_v2
        86.8%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_49_v2
        83.7%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_50_v2
        84.9%
        57%
        0.1
        000000000-JNB4T_l01_n02_HW6_51_v2
        90.0%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_52_v2
        89.2%
        56%
        0.1
        000000000-JNB4T_l01_n02_HW6_53_v2
        82.8%
        57%
        0.1
        000000000-JNB4T_l01_n02_HW6_54_v2
        83.4%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_55_v2
        80.7%
        58%
        0.1
        000000000-JNB4T_l01_n02_HW6_56_v2
        79.8%
        58%
        0.2
        000000000-JNB4T_l01_n02_HW6_57_v2
        80.2%
        58%
        0.2
        000000000-JNB4T_l01_n02_HW6_58_v2
        82.7%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_59_v2
        87.3%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_60_v2
        83.3%
        58%
        0.2
        000000000-JNB4T_l01_n02_HW6_61_v2
        85.8%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_62_v2
        86.0%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_63_v2
        88.4%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_64_v2
        88.0%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_65_v2
        87.6%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_66_v2
        84.0%
        58%
        0.2
        000000000-JNB4T_l01_n02_HW6_67_v2
        83.1%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_68_v2
        88.0%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_69_v2
        82.6%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_70_v2
        88.1%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_71_v2
        85.0%
        57%
        0.1
        000000000-JNB4T_l01_n02_HW6_72_v2
        85.1%
        58%
        0.2
        000000000-JNB4T_l01_n02_HW6_73_v2
        81.3%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_74_v2
        86.2%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_75_v2
        87.3%
        57%
        0.3
        000000000-JNB4T_l01_n02_HW6_76_v2
        85.4%
        57%
        0.1
        000000000-JNB4T_l01_n02_HW6_77_v2
        81.8%
        58%
        0.2
        000000000-JNB4T_l01_n02_HW6_78_v2
        84.4%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_79_v2
        87.6%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_80_v2
        80.8%
        58%
        0.2
        000000000-JNB4T_l01_n02_HW6_81_v2
        86.3%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_82_v2
        84.1%
        58%
        0.2
        000000000-JNB4T_l01_n02_HW6_83_v2
        82.8%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_84_v2
        81.5%
        58%
        0.2
        000000000-JNB4T_l01_n02_HW6_85_v2
        82.8%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_86_v2
        83.7%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_87_v2
        84.0%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_88_v2
        85.5%
        57%
        0.1
        000000000-JNB4T_l01_n02_HW6_89_v2
        75.1%
        59%
        0.2
        000000000-JNB4T_l01_n02_HW6_90_v2
        78.1%
        58%
        0.2
        000000000-JNB4T_l01_n02_HW6_91_v2
        84.1%
        58%
        0.1
        000000000-JNB4T_l01_n02_HW6_92_v2
        81.5%
        58%
        0.2
        000000000-JNB4T_l01_n02_HW6_93_v2
        74.2%
        59%
        0.2
        000000000-JNB4T_l01_n02_HW6_94_v2
        85.4%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_95_v2
        82.7%
        57%
        0.2
        000000000-JNB4T_l01_n02_HW6_96_v2
        84.0%
        57%
        0.1
        000000000-JNB4T_l01_n02_undetermined
        80.5%
        51%
        1.3

        Lane 1 Demultiplexing Report


        Total Read Count: Total number of PF (Passing Filter) reads in this library.
        Portion: The proportion of reads that represent the individual library in the entire Library Pool

        Showing 97/97 rows and 2/2 columns.
        LibraryTotal Read CountPortion (%)
        undetermined_library
        1296789
        7.0
        HW6_01_v2
        245297
        1.3
        HW6_02_v2
        209435
        1.1
        HW6_03_v2
        258667
        1.4
        HW6_04_v2
        126314
        0.7
        HW6_05_v2
        166809
        0.9
        HW6_06_v2
        212078
        1.1
        HW6_07_v2
        208202
        1.1
        HW6_08_v2
        228347
        1.2
        HW6_09_v2
        245083
        1.3
        HW6_10_v2
        214042
        1.2
        HW6_11_v2
        157725
        0.9
        HW6_12_v2
        194768
        1.1
        HW6_13_v2
        187588
        1.0
        HW6_14_v2
        149885
        0.8
        HW6_15_v2
        171853
        0.9
        HW6_16_v2
        98068
        0.5
        HW6_17_v2
        139803
        0.8
        HW6_18_v2
        145976
        0.8
        HW6_19_v2
        122709
        0.7
        HW6_20_v2
        233735
        1.3
        HW6_21_v2
        212410
        1.1
        HW6_22_v2
        159251
        0.9
        HW6_23_v2
        134566
        0.7
        HW6_24_v2
        168142
        0.9
        HW6_25_v2
        248270
        1.3
        HW6_26_v2
        157497
        0.9
        HW6_27_v2
        233168
        1.3
        HW6_28_v2
        98266
        0.5
        HW6_29_v2
        137631
        0.7
        HW6_30_v2
        203817
        1.1
        HW6_31_v2
        210799
        1.1
        HW6_32_v2
        224556
        1.2
        HW6_33_v2
        199253
        1.1
        HW6_34_v2
        194724
        1.1
        HW6_35_v2
        183447
        1.0
        HW6_36_v2
        193047
        1.0
        HW6_37_v2
        238243
        1.3
        HW6_38_v2
        181994
        1.0
        HW6_39_v2
        94137
        0.5
        HW6_40_v2
        108178
        0.6
        HW6_41_v2
        154876
        0.8
        HW6_42_v2
        115328
        0.6
        HW6_43_v2
        194194
        1.1
        HW6_44_v2
        236260
        1.3
        HW6_45_v2
        244053
        1.3
        HW6_46_v2
        178652
        1.0
        HW6_47_v2
        226913
        1.2
        HW6_48_v2
        198657
        1.1
        HW6_49_v2
        217411
        1.2
        HW6_50_v2
        114151
        0.6
        HW6_51_v2
        210366
        1.1
        HW6_52_v2
        134397
        0.7
        HW6_53_v2
        78279
        0.4
        HW6_54_v2
        169531
        0.9
        HW6_55_v2
        107132
        0.6
        HW6_56_v2
        201947
        1.1
        HW6_57_v2
        195494
        1.1
        HW6_58_v2
        214198
        1.2
        HW6_59_v2
        163000
        0.9
        HW6_60_v2
        158936
        0.9
        HW6_61_v2
        219598
        1.2
        HW6_62_v2
        176703
        1.0
        HW6_63_v2
        224468
        1.2
        HW6_64_v2
        150936
        0.8
        HW6_65_v2
        174443
        0.9
        HW6_66_v2
        175691
        1.0
        HW6_67_v2
        184272
        1.0
        HW6_68_v2
        199071
        1.1
        HW6_69_v2
        194603
        1.1
        HW6_70_v2
        184390
        1.0
        HW6_71_v2
        132057
        0.7
        HW6_72_v2
        166175
        0.9
        HW6_73_v2
        181080
        1.0
        HW6_74_v2
        179346
        1.0
        HW6_75_v2
        250221
        1.4
        HW6_76_v2
        136968
        0.7
        HW6_77_v2
        163570
        0.9
        HW6_78_v2
        176370
        1.0
        HW6_79_v2
        177906
        1.0
        HW6_80_v2
        213588
        1.2
        HW6_81_v2
        224759
        1.2
        HW6_82_v2
        185913
        1.0
        HW6_83_v2
        188137
        1.0
        HW6_84_v2
        180339
        1.0
        HW6_85_v2
        176518
        1.0
        HW6_86_v2
        168224
        0.9
        HW6_87_v2
        172396
        0.9
        HW6_88_v2
        106688
        0.6
        HW6_89_v2
        175585
        0.9
        HW6_90_v2
        154912
        0.8
        HW6_91_v2
        145026
        0.8
        HW6_92_v2
        155410
        0.8
        HW6_93_v2
        193892
        1.0
        HW6_94_v2
        172678
        0.9
        HW6_95_v2
        166241
        0.9
        HW6_96_v2
        144172
        0.8

        Barcodes of Undetermined Reads


        We have determined the barcodes of your undetermined reads (reads containing a barcode that you did not encode in your metadata). Here are the top 20 barcodes belonging to the undetermined reads. The full list is available here.

        Showing 20/20 rows and 2/2 columns.
        Barcode Sequence(s)CountFrequency (%)
        TCTAGACTTCTTTCCC
        5057.0
        0.4
        CTCTCTCTTCTTTCCC
        4806.0
        0.4
        TCAGTCTATCTTTCCC
        4774.0
        0.4
        CGTCATACTCTTTCCC
        4112.0
        0.3
        AGCATACCTCTTTCCC
        3258.0
        0.2
        TCTCTCCTTCTTTCCC
        3242.0
        0.2
        CATCGTGATCTTTCCC
        2971.0
        0.2
        ATAGCGCTTCTTTCCC
        2957.0
        0.2
        CAGTAGGTTCTTTCCC
        2792.0
        0.2
        TCCTCATGTCTTTCCC
        2691.0
        0.2
        CGAGCTAGTCTTTCCC
        2525.0
        0.2
        GAGCTCGATCTTTCCC
        2504.0
        0.2
        ATGAGCTCTCTTTCCC
        2488.0
        0.2
        CTTCCTCCTCTTTCCC
        2441.0
        0.2
        TCTATACTTCTTTCCC
        2402.0
        0.2
        CTCTAGAGTCTTTCCC
        2389.0
        0.2
        TCCTCATTTCTTTCCC
        2268.0
        0.2
        TCCTTCTCTCTTTCCC
        2203.0
        0.2
        TCCTCCTTTCTTTCCC
        2100.0
        0.2
        CTTCATACTCTTTCCC
        1957.0
        0.1

        Lane Statistics

        Showing 1/1 rows and 4/4 columns.
        LaneTotal # of Single-End ReadsTotal # PF Reads% Undetermined% PhiX Aligned
        1.0
        19970540
        18480690
        7.0
        3.2

        FastQC

        FastQC is a quality control tool for high throughput sequence data, written by Simon Andrews at the Babraham Institute in Cambridge.

        Sequence Counts

        Sequence counts for each sample. Duplicate read counts are an estimate only.

        This plot show the total number of reads, broken down into unique and duplicate if possible (only more recent versions of FastQC give duplicate info).

        You can read more about duplicate calculation in the FastQC documentation. A small part has been copied here for convenience:

        Only sequences which first appear in the first 100,000 sequences in each file are analysed. This should be enough to get a good impression for the duplication levels in the whole file. Each sequence is tracked to the end of the file to give a representative count of the overall duplication level.

        The duplication detection requires an exact sequence match over the whole length of the sequence. Any reads over 75bp in length are truncated to 50bp for this analysis.

        Flat image plot. Toolbox functions such as highlighting / hiding samples will not work (see the docs).


        Sequence Quality Histograms

        The mean quality value across each base position in the read.

        To enable multiple samples to be plotted on the same graph, only the mean quality scores are plotted (unlike the box plots seen in FastQC reports).

        Taken from the FastQC help:

        The y-axis on the graph shows the quality scores. The higher the score, the better the base call. The background of the graph divides the y axis into very good quality calls (green), calls of reasonable quality (orange), and calls of poor quality (red). The quality of calls on most platforms will degrade as the run progresses, so it is common to see base calls falling into the orange area towards the end of a read.

        Flat image plot. Toolbox functions such as highlighting / hiding samples will not work (see the docs).


        Per Sequence Quality Scores

        The number of reads with average quality scores. Shows if a subset of reads has poor quality.

        From the FastQC help:

        The per sequence quality score report allows you to see if a subset of your sequences have universally low quality values. It is often the case that a subset of sequences will have universally poor quality, however these should represent only a small percentage of the total sequences.

        Flat image plot. Toolbox functions such as highlighting / hiding samples will not work (see the docs).


        Per Base Sequence Content

        The proportion of each base position for which each of the four normal DNA bases has been called.

        To enable multiple samples to be shown in a single plot, the base composition data is shown as a heatmap. The colours represent the balance between the four bases: an even distribution should give an even muddy brown colour. Hover over the plot to see the percentage of the four bases under the cursor.

        To see the data as a line plot, as in the original FastQC graph, click on a sample track.

        From the FastQC help:

        Per Base Sequence Content plots out the proportion of each base position in a file for which each of the four normal DNA bases has been called.

        In a random library you would expect that there would be little to no difference between the different bases of a sequence run, so the lines in this plot should run parallel with each other. The relative amount of each base should reflect the overall amount of these bases in your genome, but in any case they should not be hugely imbalanced from each other.

        It's worth noting that some types of library will always produce biased sequence composition, normally at the start of the read. Libraries produced by priming using random hexamers (including nearly all RNA-Seq libraries) and those which were fragmented using transposases inherit an intrinsic bias in the positions at which reads start. This bias does not concern an absolute sequence, but instead provides enrichement of a number of different K-mers at the 5' end of the reads. Whilst this is a true technical bias, it isn't something which can be corrected by trimming and in most cases doesn't seem to adversely affect the downstream analysis.

        Click a sample row to see a line plot for that dataset.
        Rollover for sample name
        Position: -
        %T: -
        %C: -
        %A: -
        %G: -

        Per Sequence GC Content

        The average GC content of reads. Normal random library typically have a roughly normal distribution of GC content.

        From the FastQC help:

        This module measures the GC content across the whole length of each sequence in a file and compares it to a modelled normal distribution of GC content.

        In a normal random library you would expect to see a roughly normal distribution of GC content where the central peak corresponds to the overall GC content of the underlying genome. Since we don't know the the GC content of the genome the modal GC content is calculated from the observed data and used to build a reference distribution.

        An unusually shaped distribution could indicate a contaminated library or some other kinds of biased subset. A normal distribution which is shifted indicates some systematic bias which is independent of base position. If there is a systematic bias which creates a shifted normal distribution then this won't be flagged as an error by the module since it doesn't know what your genome's GC content should be.

        Flat image plot. Toolbox functions such as highlighting / hiding samples will not work (see the docs).


        Per Base N Content

        The percentage of base calls at each position for which an N was called.

        From the FastQC help:

        If a sequencer is unable to make a base call with sufficient confidence then it will normally substitute an N rather than a conventional base call. This graph shows the percentage of base calls at each position for which an N was called.

        It's not unusual to see a very low proportion of Ns appearing in a sequence, especially nearer the end of a sequence. However, if this proportion rises above a few percent it suggests that the analysis pipeline was unable to interpret the data well enough to make valid base calls.

        Flat image plot. Toolbox functions such as highlighting / hiding samples will not work (see the docs).


        Sequence Length Distribution

        All samples have sequences of a single length (301bp).

        Sequence Duplication Levels

        The relative level of duplication found for every sequence.

        From the FastQC Help:

        In a diverse library most sequences will occur only once in the final set. A low level of duplication may indicate a very high level of coverage of the target sequence, but a high level of duplication is more likely to indicate some kind of enrichment bias (eg PCR over amplification). This graph shows the degree of duplication for every sequence in a library: the relative number of sequences with different degrees of duplication.

        Only sequences which first appear in the first 100,000 sequences in each file are analysed. This should be enough to get a good impression for the duplication levels in the whole file. Each sequence is tracked to the end of the file to give a representative count of the overall duplication level.

        The duplication detection requires an exact sequence match over the whole length of the sequence. Any reads over 75bp in length are truncated to 50bp for this analysis.

        In a properly diverse library most sequences should fall into the far left of the plot in both the red and blue lines. A general level of enrichment, indicating broad oversequencing in the library will tend to flatten the lines, lowering the low end and generally raising other categories. More specific enrichments of subsets, or the presence of low complexity contaminants will tend to produce spikes towards the right of the plot.

        Flat image plot. Toolbox functions such as highlighting / hiding samples will not work (see the docs).


        Overrepresented sequences

        The total amount of overrepresented sequences found in each library.

        FastQC calculates and lists overrepresented sequences in FastQ files. It would not be possible to show this for all samples in a MultiQC report, so instead this plot shows the number of sequences categorized as over represented.

        Sometimes, a single sequence may account for a large number of reads in a dataset. To show this, the bars are split into two: the first shows the overrepresented reads that come from the single most common sequence. The second shows the total count from all remaining overrepresented sequences.

        From the FastQC Help:

        A normal high-throughput library will contain a diverse set of sequences, with no individual sequence making up a tiny fraction of the whole. Finding that a single sequence is very overrepresented in the set either means that it is highly biologically significant, or indicates that the library is contaminated, or not as diverse as you expected.

        FastQC lists all of the sequences which make up more than 0.1% of the total. To conserve memory only sequences which appear in the first 100,000 sequences are tracked to the end of the file. It is therefore possible that a sequence which is overrepresented but doesn't appear at the start of the file for some reason could be missed by this module.

        Flat image plot. Toolbox functions such as highlighting / hiding samples will not work (see the docs).


        Adapter Content

        The cumulative percentage count of the proportion of your library which has seen each of the adapter sequences at each position.

        Note that only samples with ≥ 0.1% adapter contamination are shown.

        There may be several lines per sample, as one is shown for each adapter detected in the file.

        From the FastQC Help:

        The plot shows a cumulative percentage count of the proportion of your library which has seen each of the adapter sequences at each position. Once a sequence has been seen in a read it is counted as being present right through to the end of the read so the percentages you see will only increase as the read length goes on.

        Flat image plot. Toolbox functions such as highlighting / hiding samples will not work (see the docs).


        Status Checks

        Status for each FastQC section showing whether results seem entirely normal (green), slightly abnormal (orange) or very unusual (red).

        FastQC assigns a status for each section of the report. These give a quick evaluation of whether the results of the analysis seem entirely normal (green), slightly abnormal (orange) or very unusual (red).

        It is important to stress that although the analysis results appear to give a pass/fail result, these evaluations must be taken in the context of what you expect from your library. A 'normal' sample as far as FastQC is concerned is random and diverse. Some experiments may be expected to produce libraries which are biased in particular ways. You should treat the summary evaluations therefore as pointers to where you should concentrate your attention and understand why your library may not look random and diverse.

        Specific guidance on how to interpret the output of each module can be found in the relevant report section, or in the FastQC help.

        In this heatmap, we summarise all of these into a single heatmap for a quick overview. Note that not all FastQC sections have plots in MultiQC reports, but all status checks are shown in this heatmap.

        loading..